Cellular morphine tolerance produced by βarrestin-2-dependent impairment of μ-opioid receptor resensitization.

نویسندگان

  • Vu C Dang
  • Billy Chieng
  • Yael Azriel
  • MacDonald J Christie
چکیده

Chronic morphine treatment produces behavioral and cellular opioid tolerance that has been proposed to be caused by attenuated μ-opioid receptor (MOR) recovery from desensitization (resensitization). The process of MOR resensitization is thought to require βarrestin-2 (βarr-2)-dependent trafficking of desensitized receptors to endosomal compartments, followed by recycling of resensitized receptors back to the plasma membrane. However, there is little direct evidence for this, particularly in native neurons. This study used whole-cell patch-clamp recording in locus ceruleus (LC) neurons from wild-type (w.t.) and βarr-2 knock-out (k.o.) mice to examine whether βarr-2/dynamin-dependent trafficking is required for MOR resensitization in neurons from opioid-naive and morphine-treated mice. Surprisingly, recovery of MOR from acute desensitization in LC neurons does not require βarr-2- or dynamin-dependent trafficking. To the contrary, MOR resensitization was accelerated by disruption of either βarr-2 or dynamin function. Chronic morphine treatment caused cellular MOR tolerance and concurrently impaired MOR resensitization in neurons from w.t. mice, as expected from previous studies, but neither occurred in neurons from βarr-2 k.o. mice. Moreover, the impairment of MOR resensitization caused by chronic morphine was reversed in w.t. neurons when G-protein-coupled receptor kinase-2 (GRK2) or dynamin function was disrupted. Together, these results establish that βarr-2/dynamin-dependent receptor regulation is not required for MOR resensitization in LC neurons. Furthermore, chronic morphine treatment modifies GRK2-βarr-2-dynamin-dependent MOR trafficking to impair receptor resensitization, thereby contributing to opioid tolerance in LC neurons by reducing the number of functional receptors on the surface membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-33-5p Regulates CREB to Induce Morphine State-dependent Memory in Rats: Interaction with µ Opioid Receptor

The aim of the present study was to examine the hypothesis that miR-33-5p attenuates morphine state-dependent (StD) memory via the µ opioid receptor by regulating cyclic AMP response element-binding protein (CREB). The effects of post-training morphine and morphine StD memory and their interaction with pre-test naloxone were evaluated using a single-trial inhibitory avoidance paradigm. Then, th...

متن کامل

Role of μ-opioid receptor in parafascicular nucleus of thalamus on morphine-induced antinociception in a rat model of acute trigeminal pain

The parafascicular nucleus (PFN) of thalamus, as a supraspinal structure, has an important role in processing of nociceptive information. In addition, μ-opioid receptor contributes to supraspinal modulation of nociception. In the present study, the effects of microinjection of naloxone (a non-specific opioid-receptor antagonist) and naloxonazine (a specific μ-opioid receptor antagonist) were in...

متن کامل

Down-regulation of μ-opioid receptor mRNA levels in the hypothalamus region of the brain indicates the probable role of opioids to influence neuroendocrine function. The results further indicate that cellular adaptation for morphine tolerance

The μ-opioid receptor is the primary site for the action of morphine. In the present study, we investigated the regulation of the μ-opioid receptor mRNA levels in the locus ceruleus, ventral tegmental area, nucleus accumbens and hypothalamus of the rat brain following intracerebroventricular administration of morphine for 7 days. The isolated mRNA from these regions was subjected to real-time q...

متن کامل

Synergistic antinociceptive actions and tolerance development produced by morphine-fentanyl coadministration: correlation with μ-opioid receptor internalization.

It has been described that coadministration of opioids with low doses of other analgesics can reduce adverse effects and increase antinociception, but combinations of two μ-opioid receptor agonists have been poorly explored. The objective of this work was threefold: 1) to evaluate the antinociceptive combination of i.c.v. morphine and fentanyl at different doses; 2) to compare the antinocicepti...

متن کامل

Analgesic tolerance to high-efficacy agonists but not to morphine is diminished in phosphorylation-deficient S375A μ-opioid receptor knock-in mice.

Morphine is one of the most potent analgesic drugs. However, the utility of morphine in the management of chronic pain is limited by its rapid development of tolerance. Morphine exerts all of its pharmacological effects via the μ-opioid receptor. In many systems, tolerance is associated with phosphorylation and desensitization of G-protein-coupled receptors (GPCRs). In case of the μ-opioid rece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 19  شماره 

صفحات  -

تاریخ انتشار 2011